If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n^2-10n-20=0
a = 9; b = -10; c = -20;
Δ = b2-4ac
Δ = -102-4·9·(-20)
Δ = 820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{820}=\sqrt{4*205}=\sqrt{4}*\sqrt{205}=2\sqrt{205}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{205}}{2*9}=\frac{10-2\sqrt{205}}{18} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{205}}{2*9}=\frac{10+2\sqrt{205}}{18} $
| 9n^2-10n20=0 | | 5x+30=9x-50 | | 6n^2-n-100=0 | | -25x=-1 | | 5-2*14^3.2x=4 | | 6x+17=77−4x | | x=4.x | | 3x^2-38x+55=0 | | 4(x+7)-2(3x-1=2(4+x) | | √x−59=19 | | X÷3-2÷5÷3÷4-2x=16÷15 | | 7-2x+3=-x+2x-5 | | p=25.6+26.1 | | p=5.6+6.1 | | (5x+18)/7=2x | | -2x2+11x-15=0 | | 2x²-5x+1=0 | | -0.7z+0.4z=1.2 | | x/3+6=28/3 | | x^2+2=(x-2)(x+4) | | x2+2=(x-2)(x+4) | | 4x+20+6=4x+3 | | 4x3-8x-3=0 | | 10x-20=4x+10 | | 7y-14y^2=0 | | 5(13+x)=15 | | 16x^2-5=70 | | 9^6x+5=10 | | 75=10t+5t^2 | | 4+4+x+1+x+1=360 | | (5x+3)-(3x-7)=34 | | 0.06x+x=62.54 |